Ch. 12: Stoichiometry 3: Mass-Mass Conversions

Follow along as you view the video, "Stoichiometry Calculations II: Mass-Mass Conversions" on <u>edpzzle.com</u> and fill in the blanks as you go. (Also available at (<u>http://youtu.be/hKThjKFEbtM</u>)

•	Sto			
	0	Problems that	are more realistic	Sour Pro-
		• We can measure mass directly		
	0	We will use molar mass to		
	0	The Mole-Mole conversions using		
				remain central to the calculations.
•	Sta	arting with mass		
	0	The process looks familiar (_)
		 First identify	and	
		• Select with		from balanced equation
		• Next set up the calculation:		
		• First multiply the mass of G by		
		Continue by multiplying by	_	
		• For the reaction $N_2(g) + 3 H_2(g) \rightarrow 2 NH$ by reacting 16.2 grams of H_2 with sufficient	$f_3(g)$, determine the nu ent N ₂ .	umber of moles of NH ₃ produced
•	En	ding with mass		
	0	First identify	and	

• Select ______ with ______ from balanced equation

- Again set up the calculations
 - First, multiply moles G by
 - Next multiply by
- For the reaction $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$, determine the mass of N_2 required to fully react with 23.8 mol H₂.
- Starting & Ending in Mass
 - If both G and W are in mass, you must ______
 - For the reaction 4 P(s) + 5 $O_2(g) \rightarrow P_4O_{10}(s)$, determine the number of grams of O_2 required to completely react with 39.2 grams of P.
 - Use Dimensional Analysis to guide you:

Multiply ______ to get ______

Multiply by ______ to get ______

Multiply by ______ to get ______

Note: if given mol G, ______

• Your Turn

• Given the reaction for the combustion of benzene (C₆H₆), $2 C_6H_6(\ell) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(g)$ how many g O₂ are needed to fully combust 84.7 g benzene?

Benzene, C₆H₆