Chem 1 Test Chapter 19 Acids & Bases Dr. Casagrande / Mrs. Rinaldi		Version B / 75 pts		Name: Answer Key		
				Date: Period:		
	Choice ch] Identify the letter of the color. Acids taste	hoice that best complete	s the stateme	nt or answ	vers the question.	
		B. salty.	C. sweet.		D. bitter.	
<u>A</u> 2	2. When acids react with m A. H ₂ (g)	etals such as Mg, what g B. He (g)	as is formed? C. H ₂ O (g)		D. O ₂ (g)	
<u>C</u> 3	3. Aqueous solutions of bas A. skin tissue and most C. skin tissue only (and	t metals.	B. neither s D. metals o		nor metals.	
B4	 In basic solutions, pheno A. yellow. 	lphthalein turns B. pink.	C. green.		D. blue.	
A 5	Aqueous solutions of aciA. conduct electricity.C. have magnetic prop		B. cannot b D. have ver			
A (6. According to the Arrhen A. ionizes to form H ⁺ i C. does not ionize.	ons in H ₂ O.	B. ionizes to		ions in H_2O . Tions in H_2O .	
<u>D</u> 7	 In the Brønsted-Lowry n A. an acid gains OH⁻. C. an acid gains H⁺. 	nodel, conjugate bases ar	B. an acid l D. an acid l	oses OH-		
C 8	8. Compounds that can act A. amphibious. C. amphoteric.	as either an acid or a bas		IS.	₄ , are called	
A 9	9. According to the Brønsted-Lowry model of acids, as the strength of the attraction of the bond holding the H <i>increases</i> , what happens to the acid?					
	A. Acid strength decreaC. Acid strength increa		B. The acid			
<u>B</u> 1	10. A strong acid or base is of A. ionizes 50%.C. ionizes very little.	one that	B. ionizes of D. does not		y.	
<u>C</u> 1	11. Acetic acid (HC ₂ H ₃ O ₂) h (HC ₃ H ₅ O ₂) has an acid d A. Both acids are consid B. Both acids have the s C. Acetic acid is a stron D. Propionic acid is a st	issociation constant, K_a lered strong electrolytes. ame strength. ger electrolyte than prop	$= 1.3 \times 10^{-5}. W$ ionic acid.			

B 12. In any aqueous solution, the product of [H⁺] and [OH⁻] ... B. equals 1.0×10^{-14} . A. equals 14. C. cannot be determined. D. equals 7. A 13. An aqueous solution whose pH is 10... A. is basic. B. might be neutral, basic, or acidic. C. is neutral. D. is acidic. C 14. What kind of reaction is involved in titration of an acid and a base? A. completion. B. dissemination. C. neutralization. D. evolution. A 15. What are the products formed in the type reaction indicated in the previous question? A. A salt and water. B. H₂ gas C. An acid and water. D. A base and water. A 16. An acid-base titration is carried out by monitoring changes in... A. pH. B. density. C. temperature. D. pressure. 17. During the titration of a *weak acid* with a *strong base*, the pH at the equivalence point will be... D B = 0C = 7D > 7C 18. In a titration, the pH at which the moles of H⁺ added is equal to the moles of OH⁻ is the ... A. endpoint. B. pH interval.

D 19. The *endpoint* of a titration is determined by ...

C. equivalence point.

A. the point at which the solution being titrated begins to boil.

B. evolution of CO₂ gas from the reaction mixture.

C. the point at which no titrant is left in the buret.

D. the pH at which the indicator changes color.

B 20. In the article, *An Invisible Fire*, why is hydrofluoric acid (HF) so dangerous?

A. It causes severe chemical burns.

B. The F⁻ ions bind to calcium and magnesium in the body's cells.

D. transition interval.

in the body's cells

C. It is an extremely strong acid. D. The H⁺ ions absorb O₂ from the blood.

Short Answer

21. [2 pts] Below is the Lewis structure of 4-methoxybenzoic acid. Circle the hydrogen atom(s) that can be ionized and explain your selection. You may draw additional symbols on the structure to help.

The selected H atom is part of an O–H bond, which is very polar so capable of being ionized.

- 22. [2 pts] Write the conjugate base for each of the following acids. Watch the charges.
 - a) $HTeO_3^ TeO_3^{2-}$ b) $HClO_3$
- 23. [2 pts] Write the conjugate acid for each of the following bases. Watch the charges.
 - a) HCO₃
 - H_2CO_3 b) $C_2H_5NH_2$ $C_2H_5NH_3^+$
- 24. [5 pts] For following reaction, circle the H⁺ being transferred and draw an arrow showing its transfer from the acid to the base in the reactants (look at the products—which way does the H⁺ go?) and label the acid (A), the base (B), the conjugate acid (CA), and the conjugate base (CB).

25. [5 pts] For the following reaction, circle the H⁺ being transferred and draw an arrow showing its transfer from the acid to the base in the reactants, then **determine the products** of the reaction and **label** the conjugate acid (CA) and the conjugate base (CB). Watch the charges!

$$HSeO_4^-(aq) + CO_3^{2-}(aq) \rightleftharpoons SeO_4^{2-}(aq) + HCO_3^-(aq)$$
Acid Base CB CA

26. [3 pts] If the pH of one solution is 7 and another has a pH of 3, which solution has a higher [H⁺]? By what factor is this solution stronger than the other solution? Explain or use a calculation to show why. The solution with pH = 3 has a higher $[H^+]$, $[H^+] = 10^{-pH} = 1.0 \times 10^{-3}$ M, while the first solution has $[H^+] = 10^{-pH}$ $10^{-pH} = 1.0 \times 10^{-7}$ M. The second solution is 10,000 times stronger (more concentrated) because each pH unit is a factor of 10 so a 4 pH unit *decrease* indicates a 10^4 *increase* in [H⁺]: $\frac{[H^+]_2}{[H^+]_1} = \frac{1.0 \times 10^{-3}}{1.0 \times 10^{-7}} = 10^4 = 10,000$.

Problems

Solve the following problems using the equations on the reference packet. To get full credit, **YOU MUST** SHOW ALL YOUR WORK IN YOUR ANSWER! Use correct Sig Figs!

27. [3 pts] Strontium hydroxide, Sr(OH)₂ is a strong base. Determine the pH of a 0.0230 M of Sr(OH)₂.

$$[OH^{-}] = 2[Sr(OH)_{2}] = 0.0460 M$$

$$pOH = -\log[OH^{-}] = -\log(0.0460) = 1.34$$

$$pH = 14.00 - pOH = 14.00 - 1.34 = \boxed{12.66}$$

$$OR \quad [H^{+}] = \frac{1.0 \times 10^{-14}}{0.0460} = 2.17 \times 10^{-13} \text{ M}$$

$$pH = -\log(2.17 \times 10^{-13}) = \boxed{12.66}$$

28. [4 pts] What are the [H $^{+}$], pH, and pOH at 298 K of a solution with [OH $^{-}$] = 6.2×10^{-14} M? Is this solution acidic, basic, or neutral?

$$pOH = -\log[OH^{-}] = -\log(6.2 \times 10^{-14}) = \boxed{13.21}$$

$$pH = 14.00 - pOH = 14.00 - 13.21 = \boxed{0.79}$$

$$[H^{+}] = 10^{-pH} = 10^{-0.79} = \boxed{1.6 \times 10^{-1} \text{ M (0.16 M)}}$$

$$OR \qquad [H^{+}] = \frac{1.0 \times 10^{-14}}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-14}} = \boxed{0.16 \text{ M}}$$

$$pH = -\log[H^{+}] = -\log(0.16) = \boxed{0.79}$$
Acidic

29. [3 pts] Write a *balanced* neutralization equation for the following acid-base reaction: HBrO₃ (bromic acid) and Ca(OH)₂ (calcium hydroxide)

$$2 \text{ HBrO}_3 (aq) + \text{Ca}(OH)_2 (aq) \rightarrow 2 \text{ H}_2O (l) + \text{Ca}(BrO_3)_2 (aq)$$

30. 20.0 mL of RbOH solution was neutralized by 15.53 mL of 0.283 M HF solution according to the balanced reaction,

$$HF(aq) + RbOH(aq) \rightarrow RbF(aq) + H_2O(l)$$

a. [3 pts] How many moles of RbOH were neutralized?

$$mol NaOH = 0.01553 L HF \times \frac{0.283 mol}{1 L} \times \frac{1 mol RbOH}{1 mol HF} = \boxed{0.00439 mol RbOH}$$

b. [2 pts] What is the concentration of the RbOH solution?

$$[RbOH] = \frac{0.00439 \text{ mol RbOH}}{0.02000 \text{ L}} = \boxed{0.220 \text{ M}}$$

[1 pt extra credit]

- A 31. Why do chemistry teachers like to teach about ammonia?
 - A. Because it's basic material.
- B. They don't—they actually hate it.

C. Because it's odor-rific!

D. Because it cleans and shines glass.