WKS
Properties of Acids and Bases

Name		
Period	Date	

1) For each description below, write *acid* if it tells about a property of an acid or *base* if it tells about a property of a base. If the property does not apply to either an acid or a base, write *neither*. If it applies to both an acid and a base, write *both*.

a)	Can turn litmus paper a different color
 b)	Reacts with certain metals to release H ₂ gas
 c)	Contains more hydrogen ions than hydroxide ions
d)	Feels slippery
e)	Reacts with carbonates
f)	Feels rough
g)	Contains equal numbers of hydrogen and hydroxide ions
 h)	Tastes bitter
i)	Tastes sour

j) Acts as an electrolyte

2) How do the concentrations of hydrogen ion and hydroxide ion determine whether a solution is acidic, basic, or neutral?

3)	In the Arrhenius model, an acid contains	and produces	in aqueous
	solutions. Write an example of an Arrhen	ius acid ionization:	

4) In the Arrhenius model, a base contains _____ and produces _____ in aqueous solutions. Write an example of an Arrhenius base ionization:

5) Arrhenius acids & bases are considered ______ (like ionic compounds) because their solutions conduct electricity. What do their solutions contain that enables them to do this? Why does pure H₂O not conduct electricity (what is it missing)?

6) Only polar H atoms will dissociate in aqueous solution. On the Lewis structure below, write in the partial charges $(\delta + / \delta -)$ and identify any hydrogen atoms that are likely to be ionizable (able to dissociate).

$$H \longrightarrow O \longrightarrow H \longrightarrow O \longrightarrow H$$

7) Based on their formulas, which of the following compounds *could* be Arrhenius acids: CH₄, SO₂, H₂S, Ca₃(PO₄)₂, HClO₃, C₆H₅COOH? Explain your reasoning.