

- A. Does the sample contain identical atoms of copper?
- B. Use the picture above to determine the percent of ⁶³Cu in the sample. What is the percent of ⁶⁵Cu?
- C. What is the atomic mass of Cu from the periodic table? Is it closer to 63 amu or 65 amu?
- D. How does the picture above explain the answer to the previous question?
- 3.5 The atomic masses of $^{35}_{17}$ Cl (75.53%) and $^{37}_{17}$ Cl (24.47%) are 34.968 amu and 36.956 amu, respectively Calculate the average atomic mass of chlorine.
- 3.6 The atomic masses of ${}^{6}_{3}$ Li and ${}^{7}_{3}$ Li are 6.0151 and 7.0160 amu, respectively. Calculate the natural abundances of these two isotopes. The average atomic mass of Li is 6.941 amu. (HINT: let x = fractional abundance of ${}^{6}Li$. Thus, 1 x = fractional abundance of ${}^{7}Li$)

3.31 Describe the operation of a mass spectrometer.

3.32 Describe how you would determine the isotopic abundance of an element from it mass spectrum.

- E. According to the mass spectrum, how many isotopes of Lithium exist?
- F. Label the each peak with the nuclide symbol for each isotope
- G. Without performing any calculations, predict the approximate atomic mass for lithium. Explain the basis for your prediction.

- H. Now calculate the average atomic mass of the element from the mass spectrum data. The height of each peak is the relative intensity, not the % abundance. You will first need to calculate the % abundance and then the average atomic mass.
 - a) What is the % of the intensity of each peak? $\left(\% = \frac{\text{Peak Intensity}}{\text{Total Intensity}} \times 100\%\right)$
 - b) You've just determined the % abundance for each isotope of the element. Use this data and the isotope masses to calculate the average atomic mass of the element.
- 3.14 How many moles of cobalt (Co) atoms are there in 6.00×10^9 (6 billion) Co atoms?
- 3.16 How may grams of gold (Au) are there in 15.3 moles of Au?
- 3.18 What is the mass in grams of a single atom of each of the following elements?

 (a) As:
 - (b) Ni:
- 3.20 How many atoms are present in 3.14 g of copper (Cu)?
- 3.22 Which of the following has a greater mass: 2 atoms of lead or 5.1×10^{-23} moles of helium?

- 3.24 Calculate the molar mass of the following substances:
 - (a) Li_2CO_3
 - (b) CS₂

4	HOMEWORK #3-1 (c) CHCl ₃
	(d) $C_6H_8O_6$
	(e) KNO ₃
	$(f) Mg_3N_2$
3.26	How many molecules of ethane (C ₂ H ₆) are present in 0.334 g of C ₂ H ₆ ?
3.28	Urea [(NH ₂) ₂ CO] is used for fertilizer and may other things. Calculate the number of N, C, O, and H atoms in 1.68×10^4 g of urea.
3.30	The density of water is 1.00 g/mL at 4°C. How many water molecules are present in 2.56 mL of water at this temperature?