Chem 2 AP Homework #4-2: Molarity and Precipitation Reactions Problems pg. 152 #16, 18, 22, 24, 60, 62, 64(a), 69, 72, 74

4.16 What is the advantage of writing net ionic equations?

4.18 Two aqueous solutions of KOH and MgCl₂ are mixed. Which of the following diagrams best represents the resulting mixture?

- 4.22 Complete the molecular equations for the following reactions. Also, write the total ionic and net ionic equations for each.
 - (a) Molecular: $Na_2S(aq) + ZnCl_2(aq) \rightarrow$

Ionic:

Net ionic:

(b) Molecular: $K_3PO_4(aq) + 3Sr(NO_3)_2(aq) \rightarrow$

Ionic:

Net ionic:

(c) Molecular: $Mg(NO_3)_2(aq) + 2 NaOH(aq) \rightarrow$

Ionic:

Net ionic:

- 4.24 By using Table 4.2 (or solubility rules), suggest one method by which you might separate:
 - (a) K^+ from Ag^+ :
 - (b) Ba²⁺ from Pb²⁺:
 - (c) NH_4^+ from Ca^{2+} :
 - (d) Ba^{2+} from Cu^{2+} :

4.60	Describe how you would prepare 250. mL of a 0.707 M NaNO3 solution from solid NaNO3. (In addition to calculation, include a sentence for how to do it and what glassware to use,)
4.64	Calculate the molarity of a solution consisting of $6.57~\mathrm{g}$ of CH_3OH in $150.~\mathrm{mL}$ of solution.
4.69 (r	nod) Describe how to prepare 500.0 mL of 0.646 M HNO3 solution, starting with a 16.0 M HNO3 solution. (Remember for concentrated acids, "Do what you oughter, add acid to water!")
4.72	You have 505 mL of a 0.125 M HCl solution and you want to dilute it to exactly 0.100 M . How much water should you add?
4.74	A 46.2-mL of a 0.568 M calcium nitrate [Ca(NO ₃) ₂] solution is mixed with 80.5 mL of 1.396 M calcium nitrate solution. Calculate the concentration of the final solution.