1. Which of these species has the highest entropy \((S^\circ) \) at 25°C?
 A. CO(g)
 B. CH₄(g)
 C. NaCl(s)
 D. H₂O(l)
 E. Fe(s)

2. Arrange the following substances in the order of increasing entropy at 25°C.
 HF (g), NaF (s), SiF₄ (g), SiH₄ (g), Al (s)
 lowest \(\rightarrow \) highest
 A. SiF₄(g) < SiH₄(g) < NaF(s) < HF(g) < Al(s)
 B. HF(g) < Al(s) < NaF(s) < SiF₄(g) < SiH₄(g)
 C. Al(s) < NaF(s) < HF(g) < SiH₄(g) < SiF₄(g)
 D. Al(s) < HF(g) < NaF(s) < SiF₄(g) < SiH₄(g)
 E. NaF(s) < Al(s) < HF(g) < SiF₄(g) < SiH₄(g)

3. Which response includes all the following processes that are accompanied by an increase in entropy?
 1. \(2\text{SO}_3(g) + \text{O}_2(g) \rightarrow 2\text{SO}_4(g) \)
 2. \(\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(s) \)
 3. \(\text{Br}_2(l) \rightarrow \text{Br}_2(g) \)
 4. \(\text{H}_2\text{O}_2(l) \rightarrow \text{H}_2\text{O}(l) + (\text{½})\text{O}_2(g) \)
 A. 1, 2, 3, 4
 B. 1, 2
 C. 2, 3, 4
 D. 3, 4
 E. 1, 4

4. Without reference to a table, arrange these reactions according to increasing \(\Delta S \).
 1. \(\text{CH}_4(g) + \text{H}_2\text{O}(g) \rightarrow \text{CO}(g) + 3\text{H}_2(g) \)
 2. \(\text{C(s)} + \text{O}_2(g) \rightarrow \text{CO}_2(g) \)
 3. \(\text{H}_2\text{O}_2(l) \rightarrow \text{H}_2\text{O}(l) + (\text{½})\text{O}_2(g) \)
 A. 1 < 3 < 2
 B. 2 < 3 < 1
 C. 2 < 1 < 3
 D. 3 < 2 < 1
 E. 3 < 1 < 2

5. Determine \(\Delta S^\circ \) for the reaction \(\text{SO}_3(g) + \text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{SO}_4(l) \).
 \[S^\circ (\text{J/K·mol}) \]
 \[
 \begin{array}{c|c}
 \text{SO}_3 & 256.2 \\
 \text{H}_2\text{O} & 69.9 \\
 \text{H}_2\text{SO}_4 & 156.9 \\
 \end{array}
 \]
 A. 169.2 J/K·mol
 B. 1343.2 J/K·mol
 C. −169.2 J/K·mol
 D. −29.4 J/K·mol
 E. 29.4 J/K·mol

6. HI has a normal boiling point of −35.4°C, and its \(\Delta H_{\text{vap}} \) is 21.16 kJ/mol. Calculate the molar entropy of vaporization \((\Delta S_{\text{vap}}) \).
 A. 598 J/K·mol
 B. 1343.2 J/K·mol
 C. −169.2 J/K·mol
 D. −29.4 J/K·mol
 E. 89.0 J/K·mol

7. The entropy change on vaporization \((\Delta S_{\text{vap}}) \) of a compound or element is
 A. always negative.
 B. always positive.
 C. sometimes positive and sometimes negative.

8. A negative sign for \(\Delta G \) indicates that, at constant \(T \) and \(P \),
 A. the reaction is exothermic.
 B. the reaction is endothermic.
 C. the reaction is fast.
 D. the reaction is spontaneous.
 E. \(\Delta S \) must be > 0.

9. Calculate \(\Delta G^\circ \) for the reaction
 \(3\text{NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2\text{HNO}_3(l) + \text{NO}(g) \).
 \[\Delta G^\circ (\text{kJ/mol}) \]
 \[
 \begin{array}{c|c}
 \text{H}_2\text{O}(l) & -237.2 \\
 \text{HNO}_3(l) & -79.9 \\
 \text{NO}(g) & 86.7 \\
 \text{NO}_2(g) & 51.8 \\
 \end{array}
 \]
 A. 8.7 kJ/mol
 B. 192 kJ/mol
 C. −414 kJ/mol
 D. −192 kJ/mol
 E. −155 kJ/mol

10. The normal freezing point of ammonia is −78°C. Predict the signs of \(\Delta H \), \(\Delta S \), and \(\Delta G \) for ammonia when it freezes at −80°C and 1 atm: \(\text{NH}_3(l) \rightarrow \text{NH}_3(s) \).
 \[\Delta H \quad \Delta S \quad \Delta G \]
 \[
 \begin{array}{c|c|c}
 \text{A.} & - & - \\
 \text{B.} & - & + \\
 \text{C.} & + & - \\
 \text{D.} & + & + \\
 \text{E.} & - & - \\
 \end{array}
 \]
11. Ozone (O₃) in the atmosphere can react with nitric oxide (NO):

\[\text{O}_3(g) + \text{NO}(g) \rightarrow \text{NO}_2(g) + \text{O}_2(g) \]

Calculate the \(\Delta G^\circ \) for this reaction at 25°C. (\(\Delta H^\circ = -199 \) kJ/mol, \(\Delta S^\circ = -4.1 \) J/K·mol)

A. 1020 kJ/mol
B. \(-1.22 \times 10^3 \) kJ/mol
C. \(2.00 \times 10^3 \) kJ/mol

12. Sodium carbonate can be made by heating sodium bicarbonate:

\[2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g) \]

Given that \(\Delta H^\circ = 128.9 \) kJ/mol and \(\Delta G^\circ = 33.1 \) kJ/mol at 25°C, above what minimum temperature will the reaction become spontaneous under standard state conditions?

A. 0.4 K
B. 3.9 K
C. 321 K

13. Hydrogen peroxide (H₂O₂) decomposes according to the equation

\[\text{H}_2\text{O}_2(l) \rightarrow \text{H}_2\text{O}(l) + (1/2)\text{O}_2(g) \]

Calculate \(K_p \) for this reaction at 25°C. (\(\Delta H^\circ = -98.2 \) kJ/mol, \(\Delta S^\circ = 70.1 \) J/K·mol)

A. \(1.3 \times 10^{-21}\)
B. 20.9
C. \(3.46 \times 10^{17}\)

14. At 1500°C the equilibrium constant for the reaction

\[\text{CO}(g) + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) \]

has the value \(K_p = 1.4 \times 10^{-7} \). Calculate \(\Delta G^\circ \) for this reaction at 1500°C.

A. 105 kJ/mol
B. 1.07 kJ/mol
C. \(-233 \) kJ/mol

15. The equilibrium constant for the reaction

\[\text{AgBr}(s) \rightleftharpoons \text{Ag}^+(aq) + \text{Br}^-(aq) \]

is the solubility product constant, \(K_{sp} = 7.7 \times 10^{-13} \) at 25°C. Calculate \(\Delta G \) for the reaction when \([\text{Ag}^+] = 1.0 \times 10^{-2} \) M and \([\text{Br}^-] = 1.0 \times 10^{-3} \) M. Is the reaction spontaneous or nonspontaneous at these concentrations?

A. \(\Delta G = 69.1 \) kJ/mol, nonspontaneous
B. \(\Delta G = -69.1 \) kJ/mol, spontaneous
C. \(\Delta G = 97.5 \) kJ/mol, spontaneous
D. \(\Delta G = 40.6 \) kJ/mol, nonspontaneous
E. \(\Delta G = -97.5 \) kJ/mol, nonspontaneous

16. \(K_w \) for the auto-ionization of water, \(\text{H}_2\text{O}(l) \rightarrow \text{H}^+(aq) + \text{OH}^-(aq) \), is \(1.0 \times 10^{-14} \). What are the signs (+/−) of \(\Delta S^\circ \) and \(\Delta H^\circ \) for the reaction at 25°C?

A. \(\Delta S^\circ = (+) \) and \(\Delta H^\circ = (+) \)
B. \(\Delta S^\circ = (+) \) and \(\Delta H^\circ = (-) \)
C. \(\Delta S^\circ = (-) \) and \(\Delta H^\circ = (+) \)
D. \(\Delta S^\circ = (-) \) and \(\Delta H^\circ = (-) \)

17. The reaction rates of many spontaneous reactions are actually very slow. Which of these statements is the best explanation for this observation?

A. \(K_p \) for the reaction is less than one.
B. The activation energy of the reaction is large.
C. \(\Delta G^\circ \) for the reaction is positive.
D. Such reactions are endothermic.
E. The entropy change is negative.