

Read pp. 705-707 in your text

Part I. Overview

1. Define nuclear radiation. What is radioactive decay? What is a radioactive nuclide? Nuclear radiation is the particle or energy emitted by a nucleus during radioactive decay. Radioactive decay is the emission of nuclear radiation from an unstable nucleus as it becomes more

A radioactive nuclide is any radioactive isotope that is unstable and can undergo radioactive decay.

2. List the 5 main kinds of nuclear decay and their properties:

Alpha particle: He-4 nucleus; mass = 4.003 amu; 2+ charge; stopped by paper/cloth; deflected in mag

Beta particle: electron; mass = V_{1823} amu; 1– charge; stopped by metal plate; deflected in mag. field Positron: positive electron; mass = V_{1823} amu; 1+ charge; stopped by metal plate; deflected in mag. field Electron capture: electron as reactant particle

Gamma radiation: EM radiation; no mass or charge; penetrates thick lead; not deflected.

3. When will a nucleus stop undergoing decay processes? When it reaches a stable product nucleus.

Part II. Complete the following nuclear decay (spontaneous transmutation) equations then identify each as its specific type of decay $(\alpha, \beta, \beta^+, e^- \text{ capture, or } \gamma)$

4.
$$\frac{214}{84}$$
Po \longrightarrow $\frac{210}{82}$ Pb + $\frac{4}{2}$ He $\Rightarrow \alpha$ decay 11. $\frac{59}{28}$ Ni + $\frac{0}{11}$ e \longrightarrow $\frac{59}{27}$ Co \Rightarrow e capture

5.
$$^{222}_{86}\text{Rn} \longrightarrow ^{218}_{84}\text{Po} + ^{4}_{2}\text{He} \Rightarrow \alpha \text{ decay}$$
 12. $^{60}_{27}\text{Co*} \longrightarrow ^{60}_{27}\text{Co+} \stackrel{0}{\cancel{0}}\gamma \implies \gamma \text{ decay}$

6.
$$^{214}_{82}\text{Pb} \longrightarrow ^{214}_{83}\text{Bi} + ^{0}_{-1}\text{e} \Rightarrow \beta \text{ decay}$$

7.
$$^{239}_{93}\text{Np} \longrightarrow ^{239}_{94}\text{Pu} + ^{0}_{-1}\text{e} \Rightarrow \beta \text{ decay}$$

8.
$$^{37}_{19}$$
K \longrightarrow $^{37}_{18}$ Ar $+$ $^{0}_{+1}$ e \Longrightarrow β^{+} emission

9.
$$_{20}^{37}$$
Ca $\longrightarrow_{19}^{37}$ K + $_{-1}^{0}$ e $\Longrightarrow \beta^{+}$ emission

10.
$$^{26}_{13}\text{Al} + \underline{^{0}_{-1}\text{e}} \longrightarrow ^{26}_{12}\text{Mg} \Rightarrow e^{-} \text{ capture}$$
 17. $^{50}_{26}\text{Fe} \longrightarrow ^{50}_{27}\text{Co} + \underline{^{0}_{-1}\text{e}} \Rightarrow \beta \text{ decay}$

11.
$$^{59}_{28}$$
Ni + $^{0}_{-1}$ e \longrightarrow $^{59}_{27}$ Co \Rightarrow e capture

12.
$$^{60}_{27}\text{Co*} \longrightarrow ^{60}_{27}\text{Co} + ^{0}_{0}\gamma \longrightarrow \gamma \text{ decay}$$

13.
$$^{238}_{92}\text{U} \longrightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\text{He} \Rightarrow \alpha \text{ decay}$$

14.
$$\underline{{}^{45}_{22}\text{Ti}} \longrightarrow {}^{45}_{21}\text{Sc} + {}^{0}_{+1}\text{e} \Rightarrow \beta^{+} \text{ emission}$$

15.
$$\underline{{}^{168}_{69}\text{Tm}} + {}^{0}_{-1}\text{e} \longrightarrow {}^{168}_{68}\text{Er} \Rightarrow \text{e}^{-} \text{ capture}$$

16.
$$\underline{{}^{214}_{83}\text{Bi}}$$
 \longrightarrow $\underline{{}^{214}_{84}\text{Po}}$ $+\underline{{}^{0}_{-1}\text{e}}$ \Rightarrow β decay

17.
$$_{26}^{50}$$
 Fe $\longrightarrow _{27}^{50}$ Co + $_{-1}^{0}$ $\Rightarrow \beta$ decay

Part III. For the following processes write the complete nuclear decay equation.

18. Write the equation for the alpha decay of americium-241

$$^{241}_{95}$$
Am $\rightarrow {}^{4}_{2}$ He + $^{237}_{93}$ Np

19. Write the equation for the beta decay of uranium-237

$$^{237}_{92}U \rightarrow ^{0}_{-1}e + ^{237}_{93}Np$$

20. Write the equation for the positron emission from silicon-26

$$^{26}_{14}\text{Si} \rightarrow ^{0}_{+1}\text{e} + ^{26}_{13}\text{Al}$$

21. Write the equation for the electron capture of sodium-22

$$^{22}_{11}$$
Na + $^{0}_{-1}$ e $\rightarrow ^{22}_{10}$ Ne

Part IV. For the following processes, write the complete nuclear decay equation and *indicate the decay* type.

22. Write out the equation for the transformation of uranium-238 into thorium-234.

$$^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He \Rightarrow \alpha \text{ decay}$$

23. What decay process can transform cobalt-60 into nickel-60? Write out the equation.

$$_{27}^{60}$$
Co \longrightarrow $_{28}^{60}$ Ni + $_{-1}^{0}$ e \Rightarrow β decay

24. Write the *two* processes can transform oxygen-15 into nitrogen-15.

$${}^{15}_{8}O \longrightarrow {}^{15}_{7}N + {}^{0}_{+1}e \Longrightarrow \beta^{+} \text{ decay}$$

$${}^{15}_{8}O + {}^{0}_{-1}e \longrightarrow {}^{15}_{7}N \Longrightarrow e^{-} \text{ capture}$$