## Part I: $K_w$ and the relationship between $H_3O^+$ and $OH^-$

## A) An introduction: Rainbow Demonstration

Solution 1: Start with 0.1 M HCl (aq) containing Universal Indicator. It is <u>red.</u> Why?\_\_\_\_\_

$$HCl(aq) + H_2O(\ell) \longrightarrow$$
 \_\_\_\_\_ + \_\_\_\_

Solution 2: Saturated Na<sub>2</sub>CO<sub>3</sub> (aq) with universal indicator. It is violet. Why?

$$Na_{2}CO_{3} (aq) \xrightarrow{H_{2}O} + \dots + \dots + \dots + \dots + \dots$$

Now, saturated Na<sub>2</sub>CO<sub>3</sub> (aq) is added to HCl (aq). An acid-base reaction occurs.

$$acid$$
 +  $base$ 

| RED<br>ORANGE  | Excess $H_3O^+$ ; Solution is Acidic (pH < 7): $[H_3O^+]$ is (high, low); $[OH^-]$ is (high, low)                                   |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| GREEN          | Same moles of $H_3O^+$ and $CO_3^{2^-}$ ; Soln is Neutral (pH = 7) $[H_3O^+]$ and $[OH^-]$ are                                      |
| BLUE<br>VIOLET | Excess $CO_3^{2-}$ ; Solution is Basic (pH > 7): [H <sub>3</sub> O <sup>+</sup> ] is (high, low); [OH <sup>-</sup> ] is (high, low) |

Thus, the relationship between [H<sub>3</sub>O<sup>+</sup>] and [OH<sup>-</sup>] is **(direct, inverse)**.

## B) Concept of Self-Ionization of Water (Concept of Kw: The equilibrium constant for water)

$$H_2O\left(\ell\right) + H_2O\left(\ell\right) \iff \underline{\qquad} + \underline{\qquad}_{Acid} \qquad {\it Base}$$

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

Now, use Le Châtelier's Principle:

- If [H<sub>3</sub>O<sup>+</sup>], an acid, is added to water, the equilibrium shifts to the \_\_\_\_\_ which causes the [OH<sup>-</sup>] to \_\_\_\_\_
- If [OH<sup>-</sup>], a base, is added to water, the equilibrium shifts to the \_\_\_\_\_ which causes the [H<sub>3</sub>O<sup>+</sup>] to \_\_\_\_
- 1) Given either  $[H_3O^+]$  or  $[OH^-]$ , calculate the value asked. Then, determine if the solution is acidic, neutral or basic and circle A, N or B.

a) 
$$[H_3O^+] = 0.1 \text{ M}$$
  $[OH^-] = ?$  A, N, B? (Acidic, neutral, basic?)

d) 
$$[H_3O^+] = 8.9 \times 10^{-9} \,\text{M} \quad [OH^-] = ? \quad A, N, B ?$$

b) 
$$[OH^-] = 0.0001 \text{ M}$$
  $[H_3O^+] = ?$  A, N, B?

e) 
$$0.025 \text{ M KOH}$$
  $[H_3O^+] = ?$  A, N, B?

c) 
$$0.001 \text{ M HCl}$$
  $[OH^-] = ?$  A, N, B?

f) 
$$0.0075 \text{ M Ca}(OH)_2$$
  $[H_3O^+] = ?$  A, N, B?

Part II: pH and pOH

A) pH: Power of hydronium ion concentration  $pH = -\log [H_3O^+]; [H_3O^+] = 10^{-pH}$ 

2) Given the following  $[H_3O^+]$  values, determine the pH of each solution. Circle either A, N, B.

*Note: Determining sig figs is tricky when dealing* with logs. The rule is that the number of sig figs of the  $[H_3O^+]$  value is equal to the number of decimal places in the pH value.



a) 
$$[H_3O^+] = 1.0 \times 10^{-3} \text{ M}$$

a) 
$$[H_3O^+] = 1.0 \times 10^{-3} \text{ M}$$
 b)  $[H_3O^+] = 1.0 \times 10^{-7} \text{ M}$ 

c) 
$$[H_3O^+] = 1.0 \times 10^{-12} \text{ M}$$

$$pH = A, N, B?$$
  $pH = A, N, B?$   $pH = A, N, B?$ 

$$pH =$$
\_\_\_\_\_ A, N, B

d) 
$$[H_3O^+] = 6.5 \times 10^{-11} \text{ M}$$

d) 
$$[H_3O^+] = 6.5 \times 10^{-11} \text{ M}$$
 e)  $[H_3O^+] = 11.5 \times 10^{-6} \text{ M}$  f) 12 M HBr

$$pH =$$
  $A, N, B?$   $pH =$   $A, N, B?$   $pH =$   $A, N, B?$ 

$$pH = A, N, B'$$

3) Given the following pH values, determine the  $[H_3O^+]$  for the solutions. Circle either A, N, B.

a) 
$$pH = 11.00$$
 A, N, B?

b) 
$$pH = 3.87$$
 A, N, B?

c) 
$$pH = 8.40$$
 A, N, B?

$$[H_3O^+] = \underline{\hspace{1cm}}$$

$$[H_3O^+] = \underline{\hspace{1cm}}$$

$$[H_3O^+] =$$
  $[H_3O^+] =$   $[H_3O^+] =$ 

4) Solution A has a pH of 2 and solution B has a pH of 5. Which solution has a higher concentration of [H<sub>3</sub>O<sup>+</sup>]? How much stronger is that solution than the other solution? Explain your reasoning.

B) Relationships between pH, pOH, [H<sub>3</sub>O<sup>+</sup>] and [OH<sup>-</sup>]

Similarly to pH, pOH is the power of hydroxide ion. Thus,  $pOH = -\log [OH^-] & [OH^-] = 10^{-pOH}$ . Similarly,  $pK_w = -\log K_w$ . We already know that  $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ . Thus, if you take the log of both sides, one gets...

$$-\log K_{w} = -\log [H_{3}O^{+}] + (-\log [OH^{-}]) = -\log (1.0 \times 10^{-14})$$

$$pK_{w} = pH + pOH = 14.00$$

Thus, we now have 6 equations we can use to convert between pH, pOH, [H<sub>3</sub>O<sup>+</sup>] and [OH<sup>-</sup>]. To review, those equations are as follows:  $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ pH} + pOH = 14.00$ 

$$pH = -\log [H_3O^+] [H_3O^+] = 10^{-pH} pOH = -\log [OH^-] [OH^-] = 10^{-pOH}$$

5) Calculate the pH and pOH of the following solutions of strong acids and bases.

a) 
$$1.0 \times 10^{-4} \text{ M HI}$$

c) 
$$1.0 \times 10^{-3} \text{ M KOH}$$

6) Use what is given to determine any missing values.

| a) $[H_3O^+] = 1.0 \times 10^{-9} \text{ M}$ | [OH <sup>-</sup> ]=               | рН=       | рОН=     | A, N, B |
|----------------------------------------------|-----------------------------------|-----------|----------|---------|
| b) [H <sub>3</sub> O <sup>+</sup> ]=         | [OH <sup>-</sup> ]=               | pH=       | pOH= 2.0 | A, N, B |
| c) [H <sub>3</sub> O <sup>+</sup> ]=         | $[OH^{-}] = 4.5 \times 10^{-8} M$ | pH=       | pOH=     | A, N, B |
|                                              |                                   |           |          |         |
| d) [H <sub>3</sub> O <sup>+</sup> ]=         | [OH <sup>-</sup> ]=               | pH= 10.76 | pOH=     | A, N, B |
|                                              |                                   |           |          |         |
|                                              |                                   |           |          |         |